

Spectrum Devices Corporation

Semiconductor Engineering and Manufacturing

RF & MICROWAVE TRANSISTORS HF SSB APPLICATIONS

HF12-125

FEATURES:

- 30 MHz
- 12.5 Volts
- IMD -30 dB
- Common Emitter
- Gold Metallization
- P_{out}= 125W PEP Min. with 12 dB Gain

• Equivalent to the ST SD1487, with Enhanced Output Power

0.500" DIAMETER SOE PACKAGE

DESCRIPTION:

The HF12-125 is a 12.5V epitaxial silicon NPN planar transistor designed primarily for HF communications. This device utilizes emitter ballasting to achieve extreme ruggedness under severe operating conditions. The HF12-series products utilize the unique Spectrum Devices' Bipolar process which offers a 67% improvement in collector-base breakdown voltage, enhancing reliability while maintaining RF performance.

ABSOLUTE MAXIMUM RATINGS: $(T_{CASE} = 25^{\circ}C)$

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage	60	V
V _{CEO}	Collector-Emitter Voltage	18	V
V _{EBO}	Emitter-Base Voltage	4.0	V
$I_{\rm C}$	Device Current	20	A
P _{DISS}	Total Dissipation	290	W
T_{J}	Junction Temperature	+200	°C
T _{STG}	Storage Temperature	-65 to +150	°C

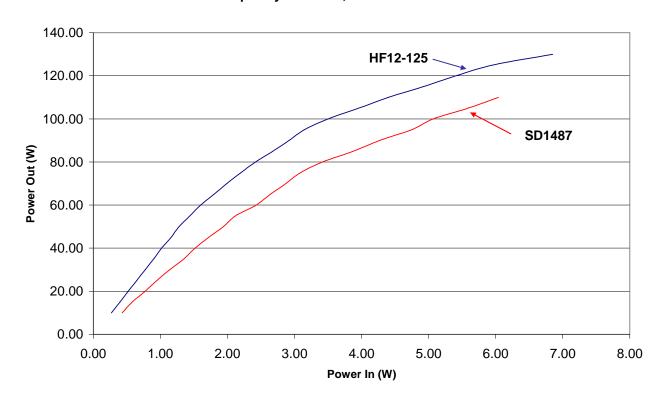
THERMAL DATA:

R _{TH(J-C)}	Thermal Resistance Junction-case	0.6	°C/W

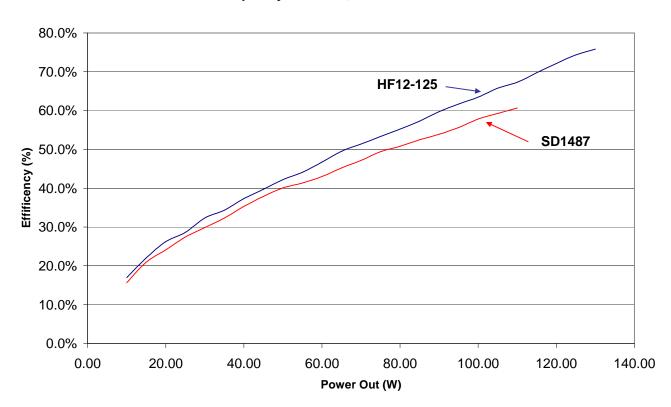
$\underline{ELECTRICAL\ SPECIFICATIONS}\ (T_{CASE}=25^{\circ}C)$

DC CHARACTERISTICS

Symbol	Test Conditions			T1 .*4		
			Min.	Тур.	Max.	Unit
BV _{CBO}	$I_C = 100 \text{ mA}$	$I_E = 0 mA$	60			V
BV _{CES}	$I_C = 100 \text{ mA}$	$V_{BE} = 0 V$	60			V
BV _{CEO}	$I_{\rm C} = 100 \text{ mA}$	$I_B = 0 \text{ mA}$	18			V
BV _{EBO}	$I_E = 20 \text{ mA}$	$I_C = 0 \text{ mA}$	4.0			V
I _{CES}	$V_{CE} = 15 \text{ V}$	$I_E = 0 \text{ mA}$			20	mA
h _{FE}	$V_{CE} = 5 V$	$I_C = 5 A$	10		200	

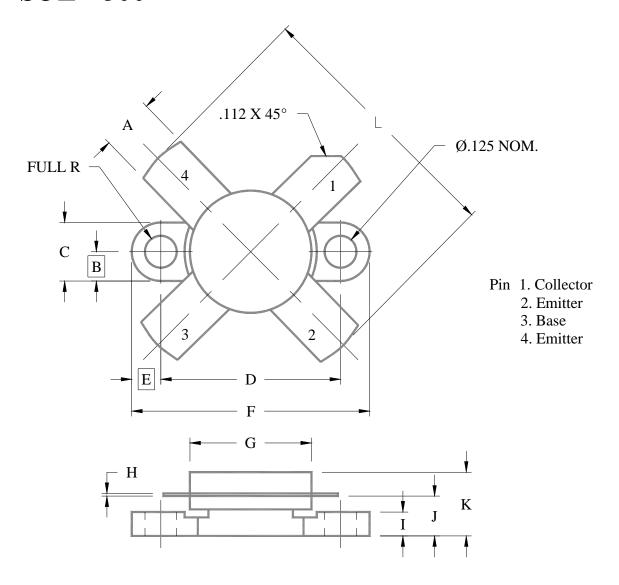

RF CHARACTERISTICS

	l Test Conditions		Value				
Symbol			Min.	Тур.	Max.	Unit	
Pout	f = 30 MHz	$V_{\rm CC}$ = 12.5 V	$I_{CQ} = 150 \text{ mA}$	125			W
G _P	P _{out} =125 W PEP	$V_{\rm CC}$ = 12.5 V	$I_{CQ} = 150 \text{ mA}$	12			dB
IMD*	P _{out} =125 W PEP	$V_{\rm CC}$ = 12.5 V	$I_{CQ} = 150 \text{ mA}$			-30	dBc
η_{C}	P _{out} =125 W PEP	$V_{\rm CC}$ = 12.5 V	$I_{CQ} = 150 \text{ mA}$	40			%
C _{OB}	f = 1 MHz	$V_{CB} = 12.5 V$			400		pF


*Conditions f1 = 30.00MHz f2 = 30.001MHz

TYPICAL PERFORMANCE

Power In vs. Power Out Frequency = 30 MHz, Vcc = 12.5 Volts



Efficiency vs Power Out Frequency = 30 MHz, Vcc = 12.5 Volts

PACKAGE MECHANICAL DATA

SOE - 500

	Minimum	Maximum		Minimum	Maximum
	Inches/MM	Inches/MM		Inches/MM	Inches/MM
A	.220/5.59	.230/5.84	G	.495/12.57	.505/12.83
В	.125/3.18		Н	.003/0.08	.007/0.18
C	.245/6.22	.255/6.48	Ι	.090/2.29	.110/2.79
D	.720/18.28	.730/18.54	J	.160/4.06	.175/4.45
E	.125/3.18		K		.280/7.11
F	.970/24.64	.980/24.89	L		1.050/26.67

DISCLAIMER

Spectrum Devices Corporation reserves the right to change, without notice, the specifications and information contained herein. Spectrum Devices Corporation believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Spectrum Devices Corporation for its use or for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Spectrum Devices Corporation. Spectrum Devices Corporation makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Spectrum Devices Corporation and are provided for information purposes only. These values can and do vary in different applications, and actual performance can vary over time. All operating parameters should be validated by customer's technical personnel for each application.

Life Support Applications

These products are not designed, intended, or authorized for use in applications intended for surgical implant or to support or sustain life, in which the failure of the Spectrum Devices Corporation product could result in personal injury or death. Spectrum Devices Corporation customers using or selling these products in such applications do so at their own risk and agree to indemnify Spectrum Devices Corporation from any damages resulting from improper use or sale.